基于嵌套经济结构的生产率分解以中国制造业为例

    Productivity Decomposition based on Nested Economic StructureAn Example of China’s Manufacturing Industry

    • 摘要: 中国经济具有明显的“全国—区域(省份)—行业—企业”的多层级嵌套结构特征,现有的生产率分解研究对此缺乏专门分析。在动态的Olley-Pakes生产率分解模型中,通过增加区域和(或)行业层级的要素流动,将不同层级的要素流动效应进行了分离,这种多级分解思路在其他生产率分解模型中具有普适性。中国制造业在1998—2007年的经验分析表明:(1)基于增加值的全要素生产率年均增速高达11.57%并具有明显的行业和区域异质性,它为制造业增长做出了58.43%的相对贡献,其中企业学习效应的相对贡献最大(62.10%),要素流动效应次之(36.78%),而企业更替效应的促进作用很小;(2)模型中的要素流动层级结构越少,企业学习效应(要素流动效应)被高估(低估)得越多;(3)在剔除全要素生产率的异常值时,将所有观测值放在一起截尾,忽视了中国制造业全要素生产率的快速增长和行业异质性,进而导致全要素生产率的增长速度被低估。

       

      Abstract: There is a multi-level nested structure of “nation-regions (provinces) -industries-enterprises” in China’s economy, which has not been studied in previous decompositions of productivity. Based on the dynamic Olley-Pakes productivity decomposition model, by introducing the factors flow at regional and/or industrial levels, the effect of factor flow was decomposed into the selection effects of different levels, which can be applied to other related models. The results of the empirical analysis of China’s manufacturing in 1998—2007 are as follows: (1) The annual growth rate of value-added based total factor productivity (TFP) is 11.57%, which has contributed 58.43% to the manufacturing growth and has obvious heterogeneity among industries and regions. The relative contribution of enterprises’ learning effect is the largest (62.10%), followed by the factor flow effect (36.78%), but enterprises’ turnover effect is very small. (2) The fewer the hierarchy of factor flow in the model, the more enterprises’ learning effect (factor flow effect) is overestimated (underestimated). (3) When excluding outliers of TFP across all observations, the rapid growth and industrial heterogeneity of TFP will be ignored, which will underestimate the TFP growth of China’s manufacturing.

       

    /

    返回文章
    返回
    Baidu
    map