面向感性设计的关联规则提炼方法的研究
search on Association Rule Refinement for Affective Design
-
摘要: 若将关联规则挖掘应用于感性设计,必需解决两个问题:一是如何设置合适的参数值(支持度与置信度)进行关联规则挖掘;二是如何从关联规则挖掘所生成的大量关联规则中提炼出真正有用的信息,以指导产品的感性设计。为了解决上述两个问题,提出了一种提炼关联规则的方法:第一步,设定低水平的支持度和置信度的阈值进行关联规则挖掘,以保留尽可能多的有用信息;第二步,从第一步生成的原始关联规则中提炼出优质的关联规则,在这一步中,设计了一系列具体步骤。并通过实例说明了该方法的应用。Abstract: It is necessary to solve the two problems before applying association rule mining to affective design: firstly, how to identify proper parameters (the support and confidence thresholds) for association rule mining; secondly, how to find out useful information from a mass of association rules generated by association rule mining. In order to solve the two problems described above, a method which could refine association rules effectively is presented: at first, a set of raw rules are generated by specif ying low values for the support and confidence thresholds; then, these raw rules are evaluated to refine the most meaningful rules, in this step, a series of concrete sub-steps is presented. A case study was conducted to illustrate the proposed method.
下载: